Imunopatomekanisme Demam Berdarah Dengue (DBD)

Authors

  • deddy hartanto Departemen Biomedik - Imunologi Fakultas Kedokteran Universitas Wijaya Kusuma Surabaya
  • Heru Setiawan Departemen Biomedik – Imunologi, Fakultas Kedokteran Universitas Wijaya Kusuma Surabaya

DOI:

https://doi.org/10.30742/cmj.v3i1.211

Keywords:

Antibody-Dependent Enhancement, cytokine storm, Demam Berdarah Dengue, imunopatogenesis, kebocoran plasma

Abstract

Latar Belakang: Demam Berdarah Dengue (DBD) merupakan komplikasi berat infeksi virus dengue yang dipicu oleh disregulasi imun selama infeksi sekunder heterolog, dengan mortalitas mencapai 20% tanpa penanganan. Tujuan: Mengkaji mekanisme imunopatogenesis DBD, termasuk peran ADE, cytokine storm, dan gangguan hemostasis, serta implikasinya untuk tata laksana klinis.  Metode: Tinjauan naratif menggunakan database PubMed, ScienceDirect, dan repositori institusi (2007–2023) dengan kata kunci: “imunopatogenesis dengue”, “ADE dengue”, “cytokine storm DHF”.  Hasil: Antibody-Dependent Enhancement (ADE) memfasilitasi masuknya virus ke monosit/makrofag, memicu produksi TNF-α/IL-6 berlebihan. Reaktivitas silang sel T (original antigenic sin) dan cytokine storm menyebabkan kebocoran plasma yang ditunjukkan dengan peningkatan kadar hematokrit >20%) dan trombositopenia (<100.000/μL). Infeksi sekunder meningkatkan risiko DBD 15–80 kali. Kesimpulan: Imunopatogenesis Demam Berdarah Dengue (DBD) bersifat multifaktorial. Deteksi dini hemokonsentrasi dan terapi imunomodulator berbasis sitokin merupakan strategi potensial.

References

Avirutnan, P., Punyadee, N., Noisakran, S., Komoltri, C, Thiemmeca, S, Auethavornanan, K., et al. (2006). Vascular leakage in severe dengue virus infections: A potential role for the nonstructural viral protein NS1 and complement. J Infect Dis, 193(8), 1078-1088. https://doi.org/10.1086/500949

Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W. et al. The global distribution and burden of dengue. Nature. 496, 504–507 (2013). https://doi.org/10.1038/nature12060

Biswal, S., Reynales, H., Saez-Llorens, X., Lopez, P., Borja-Tabora, C. et al. (2019). Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. New England Journal of Medicine, 381(21), 2009-2019. https://doi.org/10.1056/NEJMoa1903869

Chen, Y., Maguire, T., Hileman, R.E., Fromm, J.R., Esko, J.D., et al. (1997). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3, 866–871. https://doi.org/10.1038/nm0897-866

Endy T.P., Kalayanarooj S., Green S., et al. (2002). High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis, 186(8), 1165-1168. https://doi.org/10.1086/343813

Green S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Suntayakorn S, et al. (1999). Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. Journal of Infectious Diseases, 179(4), 755-762. https://doi.org/10.1086/314680

Guzman, M., Halstead, S., Artsob, H. et al. Dengue: a continuing global threat. Nat Rev Microbiol 8 (Suppl 12), S7–S16 (2010). https://doi.org/10.1038/nrmicro2460

Halstead, S. B. (2007). Dengue. The Lancet, 370(9599), 1644-1652. https://doi.org/10.1016/S0140-6736(07)61687-0

Hottz E.D., Medeiros-de-Moraes I.M., Vieira-de-Abreu A, de Assis E.F., Vals-de-Souza R. et al. (2014). Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J Immunol, 193(4), 1864-1872. https://doi.org/10.4049/jimmunol.1400091

Katzelnick, L. C., Gresh, L., Halloran, M.E., Mercado, J.C Kuan, G., et al. (2017). Antibody-dependent enhancement of severe dengue disease in humans. Science, 358(6365), 929-932. https://doi.org/10.1126/science.aan6836

Khanam A., Gutiérrez-Barbosa H., Lyke K.E., Chua J.V. (2022). Immune-mediated pathogenesis in dengue virus infection. Viruses, 14(11), 2575. https://doi.org/10.3390/v14112575

Malavige, G.N., Fernando, S., Fernando, D.J., Seneviratne, S.L. (2004). Dengue viral infections, Postgraduate Medical Journal, 80(948), 588–601. https://doi.org/10.1136/pgmj.2004.019638

Martina, B. E. E., Koraka, P., & Osterhaus, A. D. M. E. (2009). Dengue virus pathogenesis: An integrated view. Clinical Microbiology Reviews, 22(4), 564-581. https://doi.org/10.1128/CMR.00035-09

Modhiran, N., Watterson, D., Muller, D.A., Panetta, A.K., Sester, D.P., et al. (2015). Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Science Translational Medicine, 7(304), 304ra142. https://doi.org/10.1126/scitranslmed.aaa3863

St John, A.L. & Rathore, A.P.S. (2019). Adaptive immune responses to primary and secondary dengue virus infections. Nat Rev Immunol, 19(4), 218-230. https://doi.org/10.1038/s41577-019-0123-x

Saputra, I. M. Y. (2023). Patofisiologi demam dengue. Udayana Networking. https://udayananetworking.unud.ac.id/lecturer/scientific/5456-i-made-yullyantara-

saputra/patofisiologi-demam-dengue-1646.

Sellahewa, K. H., et al. (2020). Dengue virus suppresses megakaryopoiesis in patients with acute dengue. Blood Advances, 4(14), 3472-3482. https://doi.org/10.1182/bloodadvances.2020001959

Soundravally, R., & Hoti, S. L. (2007). Immunopathogenesis of dengue hemorrhagic fever and shock

syndrome: role of TAP and HPA gene polymorphism. Hum Immunol, 68(12), 973-8979. https://doi.org/10.1016/j.humimm.2007.09.007

St John, A.L., Rathore, A.P., Yap, H., Ng, M.L., Metcalfe, D.D., et al. (2013). Immune surveillance by mast cells during dengue infection promotes natural killer (NK) and NKT-cell recruitment and viral clearance. Proc Natl Acac Sci USA, 108(22), 9190-9195. https://doi.org/10.1073/pnas.1105079108

Stephens, H. A. F., Klaythong, R., Sirikong, M., Vaughn, D.W., et al. (2002). HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens, 60(4), 309-318. https://doi.org/10.1034/j.1399-0039.2002.600405.x

Thomas, S. J., & Rothman, A. L. (2015). Trials and tribulations on the path to developing a dengue vaccine. mBio, 6(6), e01339-15. https://doi.org/10.1016/j.amepre.2015.09.006

Weiskopf, D., Angelo, M.A., de Azeredo, E.L., Sette, A. (2013). Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Immunity, 43(6), 1186-1198. https://doi.org/10.1073/pnas.1305227110

Wilder-Smith, A., Ooi, Eng-Eong, Horstick, O. (2019). Dengue. The Lancet, 393(10169), 350-363. https://doi.org/10.1016/S0140-6736(18)32560-1

Wills, B. A., Tran, V.N., Nguyen, T.H.V., Truong, T.T.T., Tran, T.N.T.T et al. (2009). Hemostatic changes in Vietnamese children with mild dengue correlate with the severity of vascular leakage rather than bleeding. Am J Trop Med Hyg, 81(4), 638-644. https://doi.org/10.4269/ajtmh.2009.08-0008

Zellweger, R. M., Eddy, W.E., Tang, W.W., Miller, R., Shresta, S. (2014). CD8+ T cells prevent antigen-induced antibody-dependent enhancement of dengue disease in mice. J Immunol, 193(8), 4117-4124. https://doi.org/10.4049/jimmunol.1401597

Downloads

Published

2025-06-30

How to Cite

hartanto, deddy, & Setiawan, H. (2025). Imunopatomekanisme Demam Berdarah Dengue (DBD). CALVARIA MEDICAL JOURNAL, 3(1), 110–114. https://doi.org/10.30742/cmj.v3i1.211

Issue

Section

Review Article